The Chebyshev fast Gauss and nonuniform fast Fourier transforms and their application to the evaluation of distributed heat potentials
نویسندگان
چکیده
We present a method for the fast and accurate computation of distributed (or volume) heat potentials in two dimensions. The distributed source is assumed to be given in terms of piecewise space-time Chebyshev polynomials. We discretize uniformly in time, whereas in space the polynomials are defined on the leaf nodes of a quadtree data structure. The quadtree can vary at each time step. We combine a product integration rule with fast algorithms (fast heat potentials, nonuniform FFT, fast Gauss transform) to obtain a high-order accurate method with optimal complexity. If the input contains q polynomial coefficients at M leaf nodes and N time steps, our method requires O(q3MN log M) work to evaluate the heat potential at arbitrary MN space-time target locations. The overall convergence rate of the method is of order q. We present numerical experiments for q = 4, 8, and 16, and we verify the theoretical convergence rate of the method. When the solution is sufficiently smooth, the 16th-order variant results in significant computational savings, even in the case in which we require only a few digits of accuracy.
منابع مشابه
Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملDetermination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry
Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...
متن کاملParallel Three-Dimensional Nonequispaced Fast Fourier Transforms and Their Application to Particle Simulation
In this paper we describe a parallel algorithm for calculating nonequispaced fast Fourier transforms on massively parallel distributed memory architectures. These algorithms are implemented in an open source software library called PNFFT. Furthermore, we derive a parallel fast algorithm for the computation of the Coulomb potentials and forces in a charged particle system, which is based on the ...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملThe Application of the Fast Fourier Transform to Jacobi Polynomial expansions
We observe that the exact connection coefficient relations transforming modal coefficients of one Jacobi Polynomial class to the modal coefficients of certain other classes are sparse. Because of this, when one of the classes corresponds to the Chebyshev case, the Fast Fourier Transform can be used to quickly compute modal coefficients for Jacobi Polynomial expansions of class (α, β) when 2α an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008